26th World Gas Conference

1 – 5 June 2015, Paris, France

Action Plan for the Effects of Variation of Fuel Gas Composition and Heating Value on Gas Turbines in Korea

Joongsung Lee Korea Gas Corporation

Background

- Long-term calorie views of LNG imported by KOGAS
 - Currently, rich LNG has been decreasing in the LNG trade market, LNG imported by KOGAS has been leaner continuously
 - After 2020, average HHV could converged to 10,152 kcal/Nm³ (42.5MJ/Nm³) the change of gas heat supply system was requited to supply lean LNG

Fig. 1 Expected heating value of Korea domestic natural gas based on demand outlook

Objectives

 Gas heat supply system was improved in calorie range from standard heat supply system

Item	Before(Standard HV Sys.)	After(Since July 2012),HV range
Change of	Standard calories : 43.54MJ/Nm ³	High limit calories: 44.4MJ/Nm ³
	(10,400 kcal/Nm)	(10,600 kcal/Nm)
	Low limit calories : 42.28MJ/Nm	Low limit calories : 41.0MJ/Nm ³
	(10,100 kcal/Nmੈ)	(9,800 kcal/Nmੈ)
supplying	Max Wobbe: 57.77MJ/Nm	Max Wobbe: 56.1MJ/Nm [*]
calories	(13,800 kcal/Nmႆ)	(13,400 kcal/Nmੈ)
	Min Wobbe : 52.75MJ/Nm [*]	Min Wobbe : 54.0MJ/Nm [*]
	(12,600 kcal/Nmႆ)	(12,900 kcal/Nmႆ)

Objectives

After reviewing effects of heating variation on gas turbine, the countermeasures have been established and subsequently pre-adjusted the plan

- Reviewing effect on gas turbine
 - Performance, Combustion dynamics, Efficiency and Emission
- > Countermeasures
 - Tune or adjust GT, install instruments, change H/ W, S/W and Parts

Status of Gas Turbines

 The Gas Turbines installed in KOREA : 133 units made by 5 manufacturers

Manufacturer	Units	Installation year
Siemens	47	1992~2013
GE	34	1992.06~2011
Alstom	20	1991~1998
MHI	19	2007~2013
Hitachi	5	2007~2011
SUM	133	

Fuel Gas Design Factor and Definition

Manufacture	Design Factor & Range	Definition
MHI	$WI \pm 5\%$	$WI = \frac{LHV}{\sqrt{S_g}}$
Alstom	$WI_{net} \pm 10\%$	$WI_{net} = LHV_{mass} \times \frac{\rho_{gas(T)}}{\sqrt{\frac{\rho_{gas(T)}}{\rho_{air(0^{\circ}C)}}}}$
Siemens	$WT_{inf} \pm 5\%$	$WI \inf = \frac{LHV}{\sqrt{S_g}} (kJ / Nm^3), LHV(kJ / kg)$
GE	$MWI \pm 5\%$	$MWI = \frac{LHV}{\sqrt{(T_{fuel})(S_g)}}$
Hitachi	$MWI \pm 3.5\%$	$MWI = \frac{LHV}{\sqrt{(T_{fuel})(S_g)}}$

Interchangeability Range of T Gas Turbine

Fuel Study Results of E-Gas Turbine

Fuel Gas Temperature(FGT) in deg C

Fuel Study Results of S-Gas Turbine

9

Conclusion

- Gas turbines combustion system tuning is recommended to accommodate ignition, combustion dynamic and NOx emission for new gas
- Gas turbines installed after 2007 are not affected and do es not need tuning for new fuel gas
- New fuel gas is out of design range for the three sites Ga s Turbine Units of one brand, autotune is required for thr ee sites and recommended due to the expected fuel varia tions for other sites to GTs